首页> 外文OA文献 >Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium.
【2h】

Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium.

机译:在趋磁细菌中通过生物合成相关基因簇的基因组扩增来过量生产磁小体。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches.
机译:趋磁细菌生物合成特定的细胞器,即磁小体,它们是磁性铁矿物质的膜包裹晶体,排列成线性链。必须严格控制磁小体颗粒的数量和大小,以建立足够坚固的传感器,以确保地球弱磁场内细胞的有效排列,同时最大程度地减少由过度的磁小体生物合成所带来的代谢成本。除了它们的生物学功能外,细菌磁小体还引起了极大的兴趣,因为它们为原核细胞器的形成提供了非常有用的模型,并代表了具有卓越性能的生物磁性纳米粒子。但是,由于难以培养这些营养细菌以及它们的磁小体产量低,阻碍了潜在的应用。在这项研究中,我们发现细胞内磁小体的大小和数量受许多不同的Mam和Mms蛋白控制。我们提出了通过单个和多个磁小体基因簇通过转座染色体倍增的α变形杆菌Magnetospirillum gryphiswaldense中的磁小体生物合成基因的过表达策略。尽管逐步放大mms6操纵子会形成越来越大的晶体(增加约35%),但所有主要磁小体操纵子(mamGFDC,mamAB,mms6和mamXY,共包含29个基因)的重复产生了高产菌株其中磁小体数目增加了2.2倍。我们证明,mam和mms簇的调谐表达为控制磁小体的大小和数量提供了一种有力的策略,从而为通过合成生物学方法定制的磁性纳米颗粒的高产量生产奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号